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A program HOTFCHT for computing the vibronic fine structure of electronic spectra at different temperatures
has been developed for a theoretical investigation of the temperature dependence of absorption and fluorescence
spectra of organic molecules and a discussion of the temperature dependence of their photophysical properties.
The program is based on the time-independent approach using the adiabatic and harmonic approximations.
A Taylor series expansion of the electronic transition dipole moment takes into account vibronic coupling
similar to a first-order Herzberg-Teller treatment. For the calculation of the Franck-Condon and Herzberg-
Teller integrals, the recurrence formulae of Doktorov et al. (J. Mol. Spectrosc.1977, 64, 302) were used
while the derivatives of the electronic transition dipole moment were obtained numerically. As a first
application of this program the vibronic fine structure of the S0-S1 transitions of benzene and pyrazine were
calculated at different temperatures. The equilibrium geometries and frequencies determined at the CASSCF
level as well as the calculated spectra are in good agreement with experimental data; the main features of the
spectra and especially “hot” bands are well-reproduced and can be assigned to the corresponding vibronic
transitions.

1. Introduction

Hot bands play an important role in electronic spectra of
organic molecules: they form the basis for assignment of
Franck-Condon forbidden transitions like the 260 nm absorp-
tion band of benzene, and they are of particular importance in
hot intermediates, as they carry the information on how these
intermediates have been generated. Most importantly, thermally
excited levels dominate the density of states at room temperature
and therefore determine the temperature dependence of photo-
physical properties such as internal conversion and the rate
constants of all radiative and nonradiative deactivation pro-
cesses.1 It is therefore of great theoretical and practical interest
to be able to calculate spectra at higher temperatures.

The calculation of electronic spectra may be achieved either
by time-dependent approaches (see, e.g., ref 2) or in terms of
Franck-Condon overlaps of the initial nuclear wave functions
with time-independent vibrational eigenfunctions of the final
electronic state. For low resolution and very high density of
states, that is, for large molecules at high temperatures, the use
of time-dependent wave packets for computing spectra is
particularly advantageous, while for high resolution and room
temperature time-independent approaches might be preferable.
Although the diabatic transition dipole moments are, in contrast
to the adiabatic ones, only slowly varying functions of nuclear
coordinates,3 the adiabatic representation has the advantage of
being directly applicable to the commonly computed adiabatic
potential energy surfaces.

The prevalent approach to vibronic spectra calculation is the
Franck-Condon (FC) approximation, which requires the evalu-
ation of multidimensional overlap integrals of vibrational wave

functions, commonly known as Franck-Condon integrals.4

Different methods5-11 have been proposed for an evaluation of
these integrals. First applications to larger molecules were based
on the QCFF/PI method of Warshel and Karplus12 (force field
combined with a quantum-chemical description of theπ system)
or the CNDO/S method of del Bene and Jaffe´.13 Vibronic
coupling effects may be taken into account within the Herzberg-
Teller (HT) approximation.14 Similarly, a Taylor series expan-
sion of the electronic transition dipole moment similar to an
nth-order HT treatment15 can be used (see, e.g., ref 16).
Applications of the FC-HT treatment based on the semiempirical
QCFF/PI method17 as well as on ab initio CIS calculations18,19

or on CASSCF calculations16,20have been reported; the agree-
ment with experimental spectra is moderate to good.

Calculations of vibronic spectra at higher temperatures are
scarce; one of the problems is the systematic generation of the
combinations of vibrational quantum numbers for the transitions
that fall into a given spectral interval. The common algo-
rithms21,22 are applicable only to zero vibrational quantum
numbers in the initial state. We therefore extended the
backtracking procedure of Kemper, van Dijk, and Buck (KDB)22

to include vibrational excited levels in the initial state.23 On
the basis of this method and the general analysis of FC integrals
by Doktorov et al.,7 we developed the generally applicable
program HOTFCHT for the calculation of vibronic spectra at
higher temperatures.24

In this paper the program HOTFCHT will be described briefly
and applied to absorption and emission spectra of benzene and
pyrazine. In section 2 the derivation of the general expressions
for multidimensional FC integrals including the Dushinsky effect
given by Doktorov et al.7 is reviewed, explicit formulae for the
FC and HT integrals used in the program are stated, and the
general structure of the program is outlined. Computational
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details are given in section 3, and results are presented in
sections 4 and 5.

2. Theoretical Method and Its Implementation

The intensityIκµ of an electric dipole transition between two
vibronic states|κ(qb, QB)〉 and |µ(qb, QB)〉 is proportional to the
square of the electric transition dipole momentMBκµ and to the
populationW(µ) of the initial vibronic state|µ〉 as well as to
the transition frequencyν̃κµ or its fourth power for absorption
or emission processes, respectively.25 That is

In the adiabatic approximation the electric transition dipole
moment reads

where|ψk(qb, QB)〉 or |ψm(qb, QB)〉 and|øk,κ(QB)〉 or |øm,µ(QB)〉 denote
the final (k, κ) or initial (m, µ) electronic and vibrational states,
respectively,MBkm(QB) is the electronic transition dipole moment,
and qb and QB represent the collected electronic or nuclear
coordinates.

Owing to the parametric dependence of the electronic Born-
Oppenheimer (BO) wave function on the nuclear coordinates,
it is in general not possible to obtain an analytic expression for
MBkm(QB). Therefore, approximate methods are needed to treat
theQB dependence ofMBkm. A Taylor expansion of the electronic
transition dipole moment about the equilibrium geometryQB0

of the initial electronic state yields

whereN is the number of vibrational degrees of freedom.
Truncation of the expansion after the constant term yields

the Franck-Condon (FC) approximation,4 which neglects the
QB dependence of the electronic transition dipole moment. This
approximation is quite sufficient in many cases; for the
investigation of the Franck-Condon forbidden1A1g-1B2u

transition in benzene and of the weakly allowed1Ag-1B3u

transition in pyrazine, however, higher order terms are required.
Keeping first-order terms only yields

The derivatives of the electronic transition dipole moment with
respect to the nuclear coordinates may be obtained analytically
by the Herzberg-Teller (HT) expansion of the electronic wave
function14 or by numerical differentiation. The latter method,
which is applied in the present work, requires careful consid-
eration of the relative signs of the partial derivatives, as has

been pointed out also for the interference of FC and HT
contributions.26

The computer program HOTFCHT developed for the calcula-
tion of vibronic spectra including hot bands by means of the
Franck-Condon or Herzberg-Teller approximation, makes use
of the harmonic approximation in calculating the FC integrals
〈øk,κ(QB)|øm,µ(QB)〉 and the HT integrals〈øk,κ(QB)|Q̂η|øm,µ(QB)〉 by
assuming that the vibrational wave function of the initial and
final electronic states can be described by eigenstates of the
N-dimensional harmonic oscillator, i.e., by setting|øk,κ〉 w |Vb′〉
and|øm,µ〉 w |Vb〉. The componentsQη of the vectorQB are then
mass-weighted normal coordinates of the initial electronic state
and differ in general from the normal coordinatesQB′ of the final
electronic state by the Dushinsky transformation27

S is an orthogonalN × N matrix describing a rotation in the
N-dimensional normal coordinate space, anddB is an N-
dimensional vector specifying a translation in this space. Note
that in order to calculate the matrixS and the vectordB for a
given molecule withN vibrational degrees of freedom a proper
choice of the orientation of the initial and final electronic state
geometries must be chosen. (For a discussion see the appendix
of ref 28 and refs 10, 29.) Starting from the coherent states
|Rb〉 of theN-dimensional harmonic oscillator, Doktorov et al.7

derived recurrence relations for the FC integrals〈Vb′|Vb〉 including
the Dushinsky effect, treating the excitation process as a sudden
transition and ignoring vibrational-rotational coupling effects.

According to

the|Rb〉 serve as the generating functions for the stationary states
of the initial harmonic oscillator. A coordinate space repre-
sentation of the coherent states is given by

A similar expression is readily obtained for the coherent state
|γb〉 of the final state harmonic oscillator by substitutingQ′η for
Qη, γη for Rη andω′η for ωη. ExpressingQ′η throughQη by the
Dushinsky relation and utilizing the Gaussian integral∫-∞

∞ ...∫
exp(-1/2xbTAxb + bBTxb)dx1...dxN ) (2π)N(det A)-1/2 exp(1/2bBT

A-1bB) yields the overlap integral〈γb|Rb〉7

Here, the symmetric positive-definiteN × N matricesQ andP
and theN × N matrix R are defined as

Iκµ ∼ ν̃κµW(µ)|MB κµ|2 for absorption

Iκµ ∼ ν̃κµ
4 W(µ)|MB κµ|2 for emission (1)

MB κµ ≈ 〈øk,κ(QB)|〈ψk(qb, QB)|MB (qb, QB)|ψm(qb, QB)〉|øm,µ(QB)〉

) 〈øk,κ(QB)|MBkm(QB)|øm,µ(QB)〉 (2)

MB km(QB) ≈
QBfQB0

MB km(QB0) + ∑
η)1

N (∂MB km(QB)

∂Qη
)

QB0

(Qη - Qη
0) +

1

2
∑
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N

∑
ú)1
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)
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0) + O[(QB - QB0)
3]

(3)

MB κµ ) MB km(QB0)〈øk,κ(QB)|øm,µ(QB)〉 +

∑
η)1

N (∂MBkm(QB)

∂Qη
)

QB0

〈øk,κ(QB)|Q̂η - Q̂η
0|øm,µ(QB)〉 (4)

QB′ ) SQB + dB (5)

|Rb〉 ) e-(1/2)|Rb|2 ∑
V1,...,VN)0

∞ [∏ú)1

N ( Rú
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xVú!
)] |V1, ...,VN〉 (6)

|Rb〉 (
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(πp)-N/4[∏
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N

ωη]
1/4 exp[∑

η)1

N (-
ωη

2p
Qη

2 +

x2ωη

p
RηQη -

1

2
Rη

2 -
1

2
|Rη|2)]

〈γb|Rb〉 ) 〈0B′|0B〉 exp[-1
2
(|Rb|2 + |γb|2)] exp[-1

2
(RbTγb*T)

(1 - 2Q -2R

-2RT 1 - 2P)(Rb
γb* )+ x2(RbTγb*T)(-R 0

0 1 - P)(δB
δB )]

(7)

Q ) (1 + JTJ)-1, P ) JQJT, R ) QJT
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where

andS anddB specify the Dushinsky transformation eq 5.
The overlap integral〈0′|0〉 is given by

Following Sharp et al.5 the 〈0B′|0B〉 is normalized using the
additional factor [detS]-1/2, which equals 1 for an ideal
N-dimensional harmonic oscillator. According to eq 6, the
overlap integrals〈γb|Rb〉 of the coherent states serve as the
generating functions of the stationary states:

Combining eqs 7 and 9 yields

Starting from eq 10, Doktorov et al.7 obtained recurrence
formulae by differentiating both sides with respect toRη, using
eq 10 again to substitute the unmodified exponential by the
power expansion and collecting equal powers of{Rú} and
{γú

*} yielding eq 11, and carrying out the same procedure for
γê

* yielding eq 12:

By means of these recurrence relations, all necessary FC
integrals of a molecule withN vibrational degrees of freedom
may be calculated; these relations thus permit a calculation of
the vibrational fine structure of electronic transitions in the FC
approximation.

In order to include HT terms as well, the algebraic properties
of the ladder operators of theN-dimensional harmonic oscillator
are used to express the HT integrals as a sum of FC integrals,
yielding

Similarly, all integrals of the general type〈Vb′|Q̂1
k1 Q̂2

k2...Q̂N
kN|Vb〉

and〈Vb′|P̂1
k1 P̂2

k2...P̂N
kN|Vb〉 with kη ∈ N0 may be expanded in terms

of FC integrals.
In order to allow for anharmonicity effects, the potential

energyV(QB) is expanded in terms of one-dimensional functions
of the general typeyk exp(Ry), wherey ) [(mωe)/p]-1/2Qη,
k ∈ N0, andη ) 1, ...,N.

Using the properties of the ladder operators, Duch30 derived
the following analytic formulae for matrix elements of the one-
dimensional harmonic oscillators

wherej ) 1/2(Vη + wη - k) and max(0,j) e i e min(Vη, wη),
and

where the primed summation is performed only if (wη - j) e
(Vη + k).

These expressions can be used in a variational procedure to
expand the bound eigenstates of one-dimensional anharmonic
oscillators in terms of harmonic oscillator states. This procedure
is employed to obtain the FC and HT integrals of double well
potentials by means of the recurrence relations eqs 11 and 12.
A proper treatment of anharmonicity, however, would require
the computation of anN-dimensional anharmonic potential
energy surface and the diagonalization of the resulting Hamil-
tonian matrix to yield the eigenstates and eigenvalues of the
N-dimensional anharmonic oscillator. Since all cross-terms
betweenQη andQú with η * ú are ignored in our anharmonic
potential energy surfaceV(QB) as well as angular momentum
terms in the kinetic energy, the Hamiltonian is still separable
in the normal coordinates, but only a crude estimate of
anharmonic effects is expected.

Finally, in order to include hot bands in the spectral
calculation, the population probabilityW(µ) of the initial
vibronic state has to be taken into account explicitly. In the
harmonic approximation used here,W(µ) becomesW(Vb), and
assuming a Boltzmann distribution for a system in thermal
equilibrium one obtains31

J ) λω′Sλω
-1, λω ) diag(xω1,...,xωN), and

δB ) p-1/2λω′dB

〈0B′|0B〉 ) 2N/2[∏η)1

N ωη

ω′η]
1/4
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1

2
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Vη!
)1/2
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i

Vη!
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where

In order to calculate the temperature-dependent spectra with
the program HOTFCHT, the following input data are required,
which can be obtained from the usual quantum chemistry
programs at various levels of sophistication:

1. Equilibrium geometries of the molecule in the electronic
states under consideration.

2. Normal coordinates in mass-weighted Cartesian displace-
ment coordinates and harmonic frequencies of the electronic
states of interest.

3. The electronic transition dipole moment at the equilibrium
geometry of the initial electronic state and its derivatives with
respect to the normal coordinates.

4. If anharmonic effects are to be included, a cut through the
potential energy surface along selected normal coordinates fitted
to a function of the general typef(Qη) ) ∑kck([(mω)/p]1/2Qη)k

exp[Rk[(mω)/p]1/2Qη].
Using these input data, theS matrix and the vectorδB are

determined first; next the matricesJ, Q, R, andP are evaluated
and 〈0B′|0B〉 is computed. Finally 2R, (2Q - 1), (2P - 1),
x2RδB, andx2(1 - P)δB are evaluated and stored for further
calculation.

After the spectrum is divided into intervals according to the
desired resolution, all transition energy levels (that is, all
combinations of quantum numbers of the initial and final state
specifying a certain transition) connected with a sufficiently
populated initial vibronic state are generated by the backtracking
procedure described elsewhere.23 As all combination bands and
overtones are generated in this procedure, a large number of
transitions is obtained. For each of these transitions, the
electronic transition dipole moment is calculated according to
eq 4 using the FC and HT integrals obtained from the recurrence
formulae. Owing to the large number of transitions, the integrals
are not kept in core as suggested in ref 32 but calculated directly
as described in the Appendix.

If anharmonic effects are to be included, overlap integrals of
the general type

have to be evaluated for each transition, where thecVη andcV′η
are the expansion coefficients of the one-dimensional anhar-
monic oscillator states in the basis of one-dimensional harmonic
oscillator states. Note that couplings between several normal
modes can be included via expanding the vibrational states in
the basis of theN-dimensional oscillator states; this is, however,
currently not yet implemented in the program.

3. Computational Details

Ground- and excited-state geometries were optimized on the
CASSCF level using a double-ú basis set33 augmented by a set
of polarization functions (DZP) for benzene and a valence

double-ú basis set33 augmented by a set of polarization functions
(DZVP) for pyrazine. The active space was chosen to contain
the six π and π* MOs and, in the case of pyrazine, the two
nitrogen lone-pair orbitals. Harmonic frequencies and normal
coordinates were calculated at the optimized geometries using
analytic derivatives of the energy with respect to nuclear
coordinates. The GAUSSIAN 94 package34 was used for the
geometry optimization of pyrazine and the vibrational analyses,
while the geometries of benzene were optimized with the
GAMESS program.35

The first derivatives of the electronic transition dipole moment
with respect to the normal coordinates were determined numeri-
cally, the displacements being 0.02xu Å (benzene) or 0.01xu
Å (pyrazine). Single-point calculations at these nonequilibrium
geometries were performed with the GAMESS program using
the state-averaged method. This method shows a good con-
vergence and yields a common set of MOs for S0 and S1, thus
simplifying considerably the determination of transition dipole
moments.

The MRCI energy profile of the pyrazine modeν10a was
calculated with the progam system MOLPRO 96,36 which makes
use of the internally contracted MRCI method.37

The HOTFCHT program described in the previous section
was used to determine the spectra, using an interval width of
10 cm-1 and a half-width of 20 cm-1 in plotting the spectra.

4. Benzene: Results and Discussion

The S0 (1A1g) - S1 (1B2u) transition of benzene has been
studied in great detail experimentally as well as theoretically31,38-47

and has been used by many authors as a test case for vibronic
spectra calculation.7,8,11,18 The reason is the relatively small
number of lines due to the high symmetry of both electronic
states as well as the fact that this transition is Franck-Condon
forbidden and thus particularly suited for studying vibronic
coupling effects. Some details of the spectra can be described
quite well by simple models with few empirical param-
eters,40,43,46,48and numerous harmonic force fields based on
experimental or theoretical data have been proposed that can
reproduce the spectra with an accuracy of a few cm-1.18,49,50

These force fields, however, are mostly not general enough to
be transferred without modifications to other molecules or
electronic states, although it has been shown for benzene and
naphthalene that scaling factors of the ground-state force field
may also apply to the lowest excited covalent singlet state.50

We also use the benzene S0-S1 transition to test our method
to calculate spectra at higher temperatures. The hot bands in
addition to the above mentioned features make this transition
particularly suited for such studies. Such calculations of
vibronic spectra represent a severe test of the calculated
frequencies and normal coordinates, that is, of the detailed
shapes of the potential energy surfaces involved in these
transitions. The final aim of the calculation of vibrational
spectra at higher temperatures is to assist experimentalists in
identifying hot intermediates and in assigning spectral lines, as
well as to establish a complete description of photophysical
properties including temperature effects. As in these kinds of
application an adjustment of the force field to reproduce
experimental data is usually not possible, we did not scale the
calculated frequencies in our calculations of the benzene spectra.

CASSCF Results. Equilibrium geometries of the ground
state (1A1g) and the first excited singlet state (1B2u), which both
exhibit the full D6h symmetry, are given in Table 1. The
maximum deviation between calculated and experimental bond
lengths is 0.007 Å, with the calculated CC bond distance being
larger and the CH distance shorter than the experimental values.

W(Vb, T) ) W(0B, T) exp[-

p∑
η)1

N

υηωη

kT
] (16)

W(0B, T) ) ∏
η)1

N [1 - exp(-
pωη

kT )]

∑
V1, ...,VN,

V′1, ...,V′N)0

∞

(∏
η)4

N

cV′η
cVη

)〈V′1, ...,V′N|V1, ...,VN〉
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This matches the CASSCF results of Swiderek et al.,50 who
owing to a smaller basis set (DZV) got slightly larger deviations
from experimental values. The lengthening of the CC bond on
excitation, however, is calculated to be 0.003 Å larger than
experimentally observed. We therefore expect the progression
of the breathing modeν1 of benzene to be somewhat too long
in the calculated absorption and emission spectra.

Calculated harmonic frequencies at the equilibrium geometries
of the ground and excited state are collected in Table 2. For
the 1A1g state the agreement with experimental values is in the
usual range with deviations between 1% and 10%. For the1B2u

state, however, the differences are slightly larger, particularly
for the out-of-plane b2g modes. The same behavior has been
observed in earlier CIS18 and CASSCF50 studies. While the
excitation of an electron from aπ to aπ* MO in general leads
to a decrease of the frequencies of the S1, the Kekulémode
ν14(b2u ) undergoes a frequency exaltation in the excited state,
which has been explained on the basis of a valence bond
picture.51 The calculation succeeds in reproducing this behavior
qualitatively, although the calculated frequency increaseδν14

) 522 cm-1 is twice as large as the experimental one (260 cm-1)
and the CH rocking modeν15(b2u) is also calculated to increase
by δν15 ) 85 cm-1. These discrepancies are not surprising in
view of the calculations of Wiberg et al.,52 which showed that
even in the ground state the correct description of the benzene
b2u modes is a difficult task for HF, MP2, and CISD methods.
In the ground state both of these modes mix owing to their near
degeneracy giving in-phase and out-of-phase combination
modes. As a consequence, significant off-diagonal elements
occur for these vibrations in the Dushinsky matrix.

Owing to symmetry, the transition dipole moment between
the1A1g and1B2u states vanishes. The four e2g modes, however,
can borrow intensity by vibronic coupling and contribute in first
order to the spectra. In Table 3 the calculated relative intensities
of these vibrations are compared to the experimental data. By
far the most intense one isν6; therefore, progressions built up
on this “false” origin will dominate the spectra. Compared to
the experimental data, the contribution ofν8 is slightly
overestimated in our calculations.

Calculated Spectra. In Figure 1 the S0-S1 absorption
spectrum of benzene calculated at 0 K and at 300 K is displayed
together with the experimental spectrum, which shows the
absorbance rather than the relative intensities according to eq
1, which are plotted for the calculated spectra. The 0 K
spectrum is dominated by progressions of the totally symmetric
breathing modeν1 with several vibronic origins. Sinceν6 is
the most effective vibronic coupling mode, the main feature of
the spectrum is the progression 60

1 10
n. While in the experi-

mental spectrum the line 60
1 is more intense than 60

1 10
2, the

calculated intensities show the reversed order. Furthermore,
the calculated intensity of the line 60

1 10
4 is twice as high as that

TABLE 1: Equilibium Geometries (Å) of the 1A1g (S0) and
1B2u (S1) States of Benzene

1A1g
1B2u

parameter CASSCF DZPa exptlb CASSCF DZPc exptlb

r(CC) 1.401 1.397 1.439 1.432
r(CH) 1.076 1.079 1.074 1.075

a -230.803 47Eh. b Reference 79.c -230.629 98Eh.

TABLE 2: Vibrational Frequencies (cm-1) of the 1A1g and
1B2u States of Benzene

vibration 1A1g
1B2u

Nummer Irrepa CASSCF DZP exptlb CASSCF DZP exptlb

ν1 a1g 1033 993 963 923
ν2 a1g 3399 3074 3418 3093

ν3 a2g 1482 1350 1458 1327

ν4 b2g 713 707 482 365
ν5 b2g 1022 990 693 745

ν6 e2g 646 608 575 521
ν9 e2g 1263 1178 1237 1148
ν8 e2g 1730 1600 1665 1516
ν7 e2g 3369 3057 3389 3077

ν10 e1g 870 847 593 581

ν11 a2u 705 674 523 515

ν12 b1u 1086 1010 1056
ν13 b1u 3358 (3057) 3381

ν15 b2u 1169 1149 1254 1150
ν14 b2u 1333 1310 1855 1570

ν16 e2u 427 399 292 238
ν17 e2u 991 967 674 717

ν18 e1u 1105 1038 961 920
ν19 e1u 1612 1484 1533 1405
ν20 e1u 3388 3065 3404 3084

a Irreducible representation.b Reference 45.

TABLE 3: Calculated and Experimental Relative Intensities
of the e2g Modes in the Absorption Spectrum of Benzene

line CASSCF DZP exptla CIS 6-31Gb

60
1 100.0 100.0 100.0

70
1 5.4 3.6 6.1

80
1 3.3 0.6 1.8

90
1 2.9 1.8 0.04

a Reference 80.b Reference 18.

Figure 1. 1A1g-1B2u absorption spectrum of benzene: (a) experimental
(ref 39), (b) calculated at 300 K, and (c) calculated at 0 K.
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of 70
1 10

1, while experimentally 60
1 10

4 is only slightly more
intense than 70

1 10
1. These discrepancies are due to the overes-

timated increase of the CC bond distance on excitation, which
leads to too long a progression of the breathing modeν1. Test
calculations show that this systematic error could be easily
remedied by adjusting the excited-state CC bond length. The
progressions 80

1 10
n, 90

1 10
n as well as 60

1 160
2 10

n, 60
1 170

2 10
n, 60

1 40
2

10
n, 60

1 50
2 10

n, 60
1 100

2 10
n, and 60

1 150
2 10

n are significantly weaker
than the progression 60

1 10
n, and the highest intensity is always

calculated for the line withn ) 1. Experimental fluorescence
excitation spectra of jet-cooled benzene44 show in addition some
lines of comparable intensity, which are due to a second-order
Herzberg-Teller effect and therefore cannot be reproduced by
our first-order treatment.

At higher temperatures most of the weak lines are hidden by
more intense hot bands as can be seen from Figure 1b and Figure
2, which displays in more detail a smaller fraction of the
spectrum calculated at 300 K and compares quite well with the
experimental spectrum shown of Figure 1a. In particular, this
is true also for that part of the spectrum that shows hot bands
only; the most intense absorption at longer wavelength than the
0-0 transition is the 61

0 line, which confirms the long known
assignment of the experimental spectrum based on the assump-
tion that this hot band involves the excited-state frequency of
the mode that represents the vibronic origin of the main
progression. The intensity distribution in the neighborhood of
the 60

1 10
n lines due to the progressions 60

1 10
n+1, 60

1 161
1 10

n, and 61
2

10
n is equally well reproduced. Figure 2 shows quite clearly

that hot bands play a very significant role in room temperature
spectra and that the HOTFCHT program is very well suited to
reproduce these features.

The same applies to the S1-S0 fluorescence spectra calculated
at different temperatures, which are shown in Figure 3. The
dominating progressions again arise from the breathing mode
ν1 with several vibronic origins, with the progressions again
being somewhat too long. At higher temperatures a rich hot-
band structure shows up. The calculated spectrum in Figure 4

is in very good agreement with the experimental one displayed
in Figure 3a.

5. Pyrazine: Results and Discussion
The absorption and fluorescence spectra of pyrazine have

been the subject of many experimental and theoretical investiga-
tions. Owing to theD2h symmetry of the molecule in the ground
state S0 (1A1g) as well as in then-π*-excited state S1 (1B3u),
these spectra exhibit a well-resolved vibrational fine structure,
which allows the measurement of high-resolution gas-phase53-55

and crystal spectra56 as well as single vibronic level (SVL)
spectra53,54 and two-photon spectra.57 In addition to Franck-
Condon allowed transitions, there are lines whose intensity is
due to vibronic coupling between S1 (1B3u) and S2 (1B2u). This
interaction has been studied in detail by resonance Raman
spectroscopy58 and determination of fluorescence quantum
yields.59 Theoretical studies of the vibrational fine structure
and the S2-S1 conical intersection have been carried out on a
semiempirical60-62 as well as on the ab initio level.3,63 In this
section we present the first calculation of the vibrational fine
structure of the S0-S1 absorption and fluorescence band of
pyrazine that takes into account on an ab initio level of theory

Figure 2. 1A1g-1B2u absorption spectrum of benzene calculated at
300 K. Figure 3. 1B2u-1A1g fluorescence spectrum of benzene: (a) experi-

mental (ref 15), (b) calculated at 300 K, and (c) calculated at 0 K.

Figure 4. 1B2u-1A1g fluorescence spectrum of benzene calculated at
300 K.
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all vibrational degrees of freedom. This is of particular
importance for the determination of hot bands in the spectra
calculated at higher temperatures.

CASSCF Results. Equilibrium geometries of the ground
state and the first excited state of pyrazine are collected in Table
4. In agreement with recent DFT studies,64 it may be concluded
that the more recent ground-state structure derived from a
combination of electron diffraction, liquid-crystal NMR, and
microwave data65 is more reliable than the older one based only
on electron diffraction experiments.66 This is particularly true
for the CH distance and the HCN angle. The largest deviations
between experimental and calculated data are 0.005 Å for bond
distances and 0.7° for bond angles.

From the calculated structure of the S1 (1B3u) state, it is seen
that n-π* excitation leads to a more pronounced equalization
of bond lengths within the ring and an appreciable increase of
the CNC angles. This becomes apparent in a long progression
of the ring-deformation modeν6a, which predominates the
Franck-Condon contribution to the vibrational structure of the
fluorescence and absorption spectra.

Calculated harmonic frequencies for the ground and excited
state of pyrazine are given in Table 5. Difficulties arise in
comparing these values with experimental or other theoretical

data owing to different numbering schemes of the normal modes.
Lord et al.67 proposed a scheme that follows Wilsons numbering
of the benzene normal modes; replacement of CH groups by
nitrogen atoms, however, not only reduces the number of
vibrational degrees of freedom but also changes the form of
the normal modes, which makes it hard to assign the calculated
frequencies to the idealized normal modes of Lord et al.
Nevertheless, the vibrational analysis for the ground state
essentially confirms the assignment of Innes et al.68 Discrep-
ancies in nomenclature arise for the pairsν8a/ν9a, ν18a/ν19a, and
ν4/ν5. From Figure 5 it is seen that the normal coordinates of
the members of these pairs differ only in the relative motion of
carbon and hydrogen atoms. While Innes et al. assign the modes
with carbon and hydrogen moving in opposite phase to the lower
frequency, the calculated results correspond to the reverse
assignment. Kearly et al.69 determined atomic displacements
by inelastic neutron scattering (INS); using a force field fitted

TABLE 4: Equilibrium Geometries (Å, deg) of the 1Ag (S0)
and 1B3u (S1) States of Pyrazine

1Ag

parameter CASSCF DZVPa exptlb exptlc

1B3u
CASSCF
DZVPd

r(CN) 1.333 1.13376(13) 1.339(2) 1.357
r(CC) 1.400 1.3968(30) 1.403(4) 1.387
r(CH) 1.076 1.0813(21) 1.115(4) 1.073
∠CNC 115.9 115.65(24) 115.6(4) 119.3
∠CCN 122.0 122.18(12) 122.2(4) 120.3
∠HCN 117.2 117.87(20) 113.9(10) 119.4
a -262.807 94Eh. b Reference 65.c Reference 66.d -262.633 68Eh.

TABLE 5: Vibrational Frequencies (cm-1) of the 1Ag and
1B3u States of Pyrazine

vibration 1Ag
1 B3u

Notationa Irrepb CASSCF DZVP exptlc CASSCF DZVP exptld

ν6a ag 640 596 633 585
ν1 ag 1076 1015 1031 970
ν8a

e ag 1330 1582 1265 1377
ν9a

e ag 1745 1230 1618 1104
ν2 ag 3409 3055 3437

ν12 b1u 1112 1021 1417
ν19a

e b1u 1229 1416 1026
ν18a

e b1u 1635 1139 1588
ν13 b1u 3385 3012 3422

ν15 b2u 1070 1063 1468
ν14 b2u 1152 1149 1382
ν19b b2u 1539 1416 1141f
ν20b b2u 3404 3036 3436

ν6b b3g 754 704 676 662
ν3 b3g 1473 1346 1424
ν8b b3g 1680 1525 902
ν7b b3g 3384 3040 3410

ν16a au 406 341 440 400
ν17a au 995 960 856 743

ν10a b1g 954 919 312g 383

ν4
e b2g 775 983 536 552

ν5
e b2g 988 756 853f 518

ν16b b3u 456 420 250 236
ν11 b3u 829 785 710
a Reference 67.b Irreducible representation.c Reference 68.d Ref-

erence 54.e Assignment different from ref 68 and ref 54.f Differing
types of vibrations in ground and excited state.g Calculated considering
the anharmonic potential.

Figure 5. (a) Calculated normal coordinates compared to (b) the
schematic diagrams of Lord et al.67
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to the INS intensities yielded an interchange of the b2g vibrations
ν4 andν5 as compared to ab initio results. A similar behavior
of ν8a/ν9a (ag) as well asν18a/ν19a (b1u) is thus not unlikely. On
the basis of these modified assignments the agreement of the
calculated ground-state frequencies with experimental values
is quite satisfactory; deviations are in general smaller than 10%
and for frequencies above 3000 cm-1 smaller than 13%.
Exceptions areν18aandν16a. The excited-state frequencies show
a similarly good agreement with the available experimental
values. A noticeable discrepancy is observed only forν5.

The two lowest excited states of pyrazine represent a classical
example of vibronic coupling in aromatic systems.70 From
group theory it follows that first-order coupling is possible only
by b1g vibrations. Asν10a is the only vibrational mode of this
symmetry, it is possible to approximately describe the S1-S2

interaction by a single vibronic coupling mode.56,71-74 If in
addition totally symmetric tuning modes are included in the
model, multimode effects in the spectrum can be described75

and a S1-S2 conical intersection can be characterized.3,60,63,75,76

Owing to this vibronic coupling, the S1 potential of the mode
ν10ais strongly anharmonic. From the absorption spectrum one
has ν10a

n ) 383, 823, and 1307 cm-1. Model calculations
based on the absorption spectrum yield a flat energy profile,56,72

while resonance Raman intensities suggest the occurrence of a
double-minimum potential.73 Energy profiles along the S1
normal coordinate ofν10a calculated on the CASSCF level for
S0, S1, and S2 are shown in Figure 6. Owing to the mutual
interaction the S2 potential is fairly steep, while the S1 potential
has a double minimum with a barrier of 295 cm-1. However,
if in addition dynamic correlation is taken into account, a
somewhat different S1 energy profile results. MRCI surfaces
of Domcke et al.,3 for instance, exhibit no double minimum. In
order to obtain the energy profile of theν10a mode at the
minimum geometry of the excited state, geometry optimizations

restricting the symmetry toD2h were carried out at the MRCI
level. As it is not possible for technical reasons to include all
single and double excitations with respect to the CASSCF
reference, the optimization as well as the determination of the
energy profile was performed keeping frozen the 11 lowest
MOs, which are separated from the other MOs by a significant

Figure 6. Calculated potential energies of S0, S1, and S2 as a function
of the normal coordinate 10a of the S1 state of pyrazine.

Figure 7. 1Ag-1B3u absorption spectrum of pyrazine: (a) experimental
(ref 54), (b) calculated at 300 K, and (c) calculated at 0 K.

Figure 8. 1B3u-1Ag fluorescence spectrum of pyrazine: (a) experi-
mental (ref 53) and (b) calculated at 0 K.
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energy gap. This is the smallest frozen core of ref 3. The
resulting energy profile is shown in Figure 6 by a broken line
and corresponds to a double minimum with a barrier of only
46 cm-1. Thus, a double-minimum potential cannot be ex-
cluded, although the zero-point vibration lies already above the
barrier. In order to take into account the anharmonicity ofν10a

in calculating the spectra, a polynomial of degree 12 was fitted
to this potential, and an expansion in terms of harmonic
oscillators was used to describe the vibration. This is only a
crude approximation, which cannot describe the coupling with
other vibrations that may arise through the anharmonicity and
its effect on the vibrational structure.

Calculated Spectra. Absorption spectra of pyrazine calcu-
lated at 0 and 300 K, the fluorescence spectrum calculated at 0

K, and the absorption spectrum calculated using the MRCI
potential of the modeν10aare shown together with experimental
spectra in Figures 7-9, respectively. To facilate the comparison
with the experimental spectra, the frequencies of the calculated
spectra have been scaled by 0.9, which is a crude factor but
sufficient for this application, since the scale factors for most
popular basis sets are close to this value.77 The modeν6a gives
rise to the most intense progression in the absorption as well as
in the fluorescence spectrum. From the good agreement
between the calculated and the experimental values for the
relative intensities of the totally symmetric vibrations collected
in Table 6, it may be concluded that the structural changes on
excitation are correctly described by the computed equilibrium
geometries. The relative intensity ofν8a (ν9a according to Innes
et al.68), however, differs from the experimental values in the
same way as in other quantum chemical calculations of the
spectra.3,61,63 Using a force field scaled to reproduce the atomic
displacements might improve the intensities. The low intensity
of theν1 mode in the experimental spectrum has been explained
by Heider and Fischer75 by an anharmonic coupling with the
first harmonic of ν10a. In the experimental fluorescence
spectrum the intense 10a1

0 line is split intoP andR branches; in
low-resolution spectra71,78where the rotational fine structure is
not resolved the intensity is intermediate between those of the
lines 6a1

0 and 8a1
0, in good agreement with our calculations.

The correct line position, however, is reproduced only if the
MRCI potential is used (Figure 9). The calculated intensities
of the b2g modesν4 andν5, which can borrow some intensity

Figure 9. 1Ag-1B3u absorption spectrum of pyrazine: (a) experimental
(ref 81) and (b) calculated at 0 K using the MRCI potential of the 10a
mode.

Figure 10. Recurrence tree for the overlap integral〈211|100〉 of a three-dimensional harmonic oscillator. Recurrence relations are applied to the
underlined vibrations.

TABLE 6: Calculated and Experimental Relative Intensities
of the Totally Symmetric Modes in the Absorption and
Fluorescence Spectrum of Pyrazine

absorption fluorescence

Band CASSCF DZVP exptla Band CASSCF DZVP exptla

6a0
1 80 80 6a1

0 71 80
6a0

2 32 33 6a2
0 25 25

8a0
1 40 18 8a1

0 50 70
10

1 24 3 11
0 13 7

a Reference 54.
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from the more distant1B1g state, are so low that these lines do
not show up in the calculated spectra. Owing to symmetry,
single quantum transitions ofν16a (au) and ν16b (b3u) are
forbidden. These vibrations are observed as hot bands; the
spectrum calculated at 300 K gives the correct position and
intensity of these lines. In addition, the overtone 16b0

2, whose
intensity is due to the much smaller frequency of this mode in
the excited state, is calculated in good agreement with the
experimental spectrum.

6. Conclusion

In agreement with experimental spectra, the results presented
for the benzene and pyrazine spectra show clearly that hot bands
are an essential feature in room temperature electronic spectra
of benzene derivatives. Not only do they determine the overall
appearance of the spectra, they also provide characteristic details
for their assignment and their analysis in terms of ground- and
excited-state potential energy surfaces and detailed shapes of
the normal coordinates.

The program HOTFCHT based on the adiabatic and harmonic
approximations is well-suited to reproduce all these details in
good agreemant with experimental data. Anharmonicity effects
like the double-minimum potential due to S1-S2 interaction in
pyrazine can be taken into account by expanding the eigenstates
in terms of harmonic oscillator states.

Work in progress on aromatics as well as hot reaction
intermediates will further demonstrate the importance of high-
temperature calculations of the vibrational fine structure of
electronic transitions in identifying and assigning spectral lines.
The ultimate goal of this work is a complete description of
photophysical properties including temperature effects.
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Appendix

Application of the recurrence relations eqs 11 and 12 to
evaluate the overlap integral〈Vb′|Vb〉 is schematically illustrated
in Figure 10 for a typical integral〈211|100〉 of a three-
dimensional oscillator. In the first step the smallest nonzero
element of the initial stateVb is chosen asVη+ 1 in eq 11. In
order to evaluate〈Vb|V1, ..., Vη+1, ..., VN〉, the integrals
〈V′1,...,V′ê-1,...,V′N|V1,...,Vη,...,VN〉 and 〈Vb′|V1, ..., Vú-1, ..., VN〉,
where ê and ú run over all N normal modes with nonzero
quantum numbersV′ê and Vú, respectively, as well as the
integral 〈Vb′|V1, ..., Vη, ..., VN〉 are required and have to be
evaluated in the same way by choosing an appropriateη. If
only integrals of the type〈Vb′|0B〉 are left, the smallest nonzero
quantum number of the final stateVb′ is chosen asV′ê + 1 in eq
12. This procedure is repeated until the integral〈0B′|0B〉 is
reached, which is computed from eq 8.

A brute-force application of this recurrence scheme is highly
ineffective due to repeated calculation of integrals (e.g., for the
integral in Figure 10〈200|000〉 would be calculated four times),
but this method could be improved in several ways: (i) by
storing all calculated Franck-Condon integrals, for instance in
a binary tree as suggested by Gruner et al.32 (conventional
method), (ii) by storing some of the calculated Franck-Condon
integrals, for instance those of the type〈Vb′|0B〉 (semidirect
method), (iii) by conducting the recurrence in such a way

through the tree that repeated calculation of the same integrals
is more or less strictly avoided (direct method), or, finally, (iv)
by calculating the integrals iteratively beginning with〈0B′|0B〉 and
ending at〈Vb′|Vb〉 (iterative direct method).

As with increasing temperature the number of overlap
integrals becomes exceedingly large, the conventional method
is only of limited value; test calculations of the benzene
spectrum at 300 K show that the binary tree quickly consumes
a few gigabytes of main storage. The semidirect method might
be a good compromise for workstation computers, while the
direct method uses less than 10 MB core memory for the
benzene case and is therefore well-suited even for personal
computers. In our current implementation of the recurrent direct
method, the number of multiple calculation of integrals is
reduced but not completely zero. We therefore expect a
significant speedup for an iterative direct scheme.
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